If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+25=35x
We move all terms to the left:
10x^2+25-(35x)=0
a = 10; b = -35; c = +25;
Δ = b2-4ac
Δ = -352-4·10·25
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-15}{2*10}=\frac{20}{20} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+15}{2*10}=\frac{50}{20} =2+1/2 $
| 1/4x-10=-1/4x+1.5 | | -21+2x=5x+51 | | -2n=14-4n | | 7a-3=3+6a | | 7+78x=39+19 | | 13-4x=1-x | | x(3+3)^2−26=10 | | y(3+3)^2−26=10 | | 4x−9(-4)=36 | | (x+17)-1/5=19 | | 7j+4=9j | | 16+6y=5 | | 7p+1=106 | | (x^2-6)*(2-x)=0 | | 2x+25=-2x+57 | | (x^2-6)*(2-x)=x*(x-2) | | 2t+1=101 | | 67=q−22 | | w+9=72 | | j+42=94 | | 76=u+33 | | 23z=414 | | 31n=527 | | 26r=338 | | (y-4)÷y=6/7 | | 866=2u | | 31f=186 | | x=17+1/2 | | 7x-2=5×x+14 | | 3(2x-10)=2(x+20) | | 16(x-3)=142-(4x-11)×6 | | 15=d15 |